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ABSTRACT 

 
The security of Automatic Speaker Verification systems is greatly 

threatened by spoofing attacks of various kinds. Among them, 

replay attacks are noteworthy due to the ease with which they can 

be employed. Most countermeasures for replay attacks use subband 

features based on parallel filter banks. This paper explores the 

effect of ‘spatial differentiation’ used in auditory system modelling 

to improve frequency selectivity and hence provide a more 

selective front-end for replay attack detection. Experiments were 

done using a parallel filter bank consisting of simple 2nd order IIR 

bandpass filters following which, processing analogous to spatial 

differentiation was employed to obtain higher order stable IIR 

filters, in turn leading to highly selective filter banks. Two novel 

features based on spatially differentiated higher order filter bank 

have been proposed. Together they yield a relative improvement of 

29.9% in replay speech detection over a constant Q transform 

based baseline system, when evaluated on the ASVspoof 2017 

Version 2.0 database.    

 
Index Terms— Automatic speaker verification, Anti-

spoofing, ASVspoof 2017, Spatial differentiation 

 

1. INTRODUCTION 

Automatic Speaker Verification (ASV) has gained much attention 

as a biometric authentication technique in the past few decades. 

However, with the increased implementation of ASV in practical 

contexts, different forms of attacks which try to deceive ASV 

systems are also becoming prominent. These attacks include 

identical twins [1], impersonation, voice conversion, speech 

synthesis and replay attacks [2]. Among them, replay attacks can 

be mounted rather easily using consumer devices without much 

technical expertise. A replay attack simply means an attacker 

recording the voice of a verified speaker and playing it back to the 

ASV system to gain access to secured content. The number of 

available recording and playback devices and possible recording 

environments is numerous. Therefore, effective countermeasures 

should be able to deal with varied unknown acoustic conditions. 

Hence, developing generalizable countermeasures for replay attack 

detection has become one of the major challenges faced by the 

ASV research community. 

  State-of-the-art research on replay attack detection are based 

on the ASVspoof 2017 database [3]. Many systems which explore 

various front-end features and back-end classifiers have been 

proposed based on this database. Most features to date for replay 

spoofing detection are based on the speech magnitude spectrum 

and employ subband decomposition using conventional filter banks 

such as triangular, rectangular or Gabor filters. Some examples 

include Mel Frequency Cepstral Coefficients (MFCC) and 

Rectangular Filter Cepstral Coefficients (RFCC) [4]. Other 

features include Amplitude Modulation (AM) [5], subband spectral 

centroid magnitude and subband spectral centroid frequency, the 

latter two of which contain some information on the subband 

energy distribution of a signal [4]. Mel and linear filter bank based 

spectral slopes have been used to extract low and high frequency 

information respectively showing improved detection accuracy 

over constant Q transform based features [6]. Investigation of 

frequency selectivity of filters in the context of replay attack 

detection has been limited to the number of filters and frequency 

scale used in filter banks. 

Some countermeasures have taken rather different approaches, 

such as using Empirical Mode Decomposition (EMD), to 

decompose a signal into subbands [7]. Phase-based features such 

as modified group delay [8, 9] and frequency modulation (FM) 

[10] have also been used as front-end features. Speech production 

source information has also proven effective for replay attack 

detection [11, 12]. Long-term time frequency representations such 

as modulation spectra have also shown great promise [13]. 

Although many novel features have been proposed, the best 

performing systems for replay attack detection are fusions of many 

systems [14].     

Feature extraction processes motivated by the human auditory 

system have been used in various fields such as speech recognition 

[15] and speaker recognition [16]. For example, computational 

auditory scene analysis based on Gammatone filters models human 

ability to selectively listen to channels in a multichannel situation 

[15]. In [16] a physiologically based auditory periphery model has 

been used to extract features for robust speaker identification. The 

importance of frequency selectivity in the inner ear for speaker 

identification has been investigated here. However, auditory 

system-based concepts are not widely used in replay attack 

detection even though techniques such as constant Q transform 

[17] which are analogous to auditory perception have shown 

consistently good performance [18]. Sailor et al. have used 

convolutional restricted Boltzman machine to learn an auditory-

like filter bank to extract AM-FM features. But the auditory aspect 

of the filters has not been investigated in depth [19].  Since the 

auditory system has a remarkable ability to analyze and recognize 

complex sounds, adopting more auditory concepts in replay attack 

detection may improve performance.  

The basilar membrane located within the cochlea of the human 

auditory system produces mechanical displacements as responses 

to input pressure variations [20]. The point with highest 

displacement is determined by the frequency of the input. ‘Spatial 

6011978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



differentiation’ has been used to model the mechanical coupling 

within the basilar membrane [21]. These frameworks have 

modelled the human cochlear using a transmission line system, 

where the basilar membrane is represented as a cascade of filters 

tuned to different frequencies [22]. Here, the word ‘spatial’ comes 

from the fact that the filtering effect is related to the mechanical 

displacement along the length of the basilar membrane. It has been 

established that spatial differentiation increases the frequency 

selectivity of filters in an auditory filter model [23]. Spatial 

differentiation has been used to model fluid coupling, in turn 

giving rise to additional sharpening mechanisms in the basilar 

membrane [21, 22].  

This paper proposes using spatial differentiation proposed in 

auditory system modelling as a technique to improve the selectivity 

of filters of a parallel filter bank in feature extraction for replay 

attack detection.  

2. SPATIAL DIFFERENTIATION 

Define a filter bank of 𝑁 2nd order infinite impulse response (IIR) 

bandpass filters  ℱ(0) = {𝐻𝑖
(0)(𝑧); 𝑖 = 1, … , 𝑁}, with each filter 

defined as: 

𝐻𝑖
(0)(𝑧) =

1−𝑧−2

1−2𝑟𝑖 cos 𝜃𝑖𝑧−1+𝑟𝑖
2𝑧−2                 (1) 

 

where, 𝑖 denotes the filter number, the (0) in the superscript 

denotes that this is the undifferentiated filter bank, and 𝜃𝑖 and 𝑟𝑖 

denote the pole angle and radius of the 𝑖𝑡ℎ filter respectively. This 

filter can be considered as a simple approximation of an auditory 

filter. A new filter bank can be obtained by spatial differentiation, 

𝐒{∙},  as follows: 

ℱ(𝑗+1) = 𝐒{ℱ(𝑗)} = {𝐻𝑖
(𝑗+1)

(𝑧);  𝑖 = 1, … , 𝑁 − 1} 

where, 

𝐻𝑖
(𝑗+1)

(𝑧) = 𝐻𝑖+1
(𝑗)

(𝑧) − 𝐻𝑖
(𝑗)

(𝑧)                     (2)  

 

and 𝑗 here denotes the order of spatial differentiation. 

To show the effect of spatial differentiation, a parallel filter 

bank consisting of 2nd order IIR bandpass filters equally spaced in 

mel frequency scale were created and the magnitude response of 

one of the filters in the filter bank is shown before and after spatial 

differentiation. Specifically, in this example 𝑁 = 80 and the 

magnitude response of the 55th filter (initial centre frequency of 

3349.3Hz) is shown in Figure 1 along with the magnitude 

responses of the 55th filter after 3 and 6 spatial differentiations.  

Note that the gains of the filters were set to 1 for easy 

comparison. Some observations can be made using the above 

figure: The centre frequency of each filter has increased with each 

differentiation, and the filter shape becomes sharper with steeper 

slope.  

It can be seen that the transfer function of the filters in the filter 

bank after the first spatial differentiation is increased to 4th order 

and is given by: 

𝐻𝑖
(1)(𝑧) =

𝑘𝑖𝑧−1(1−𝑧−2)

1+𝑐𝑖1𝑧−1+𝑐𝑖2𝑧−2+𝑐𝑖3𝑧−3+𝑐𝑖4𝑧−4
                  (3) 

where, 

 𝑘𝑖 = −4𝑟 (
𝜃𝑖+1 −𝜃𝑖

2
) 𝑠𝑖𝑛 (

𝜃𝑖+𝜃𝑖+1

2
)                         (4) 

 

and 𝑐𝑖1
= −4𝑟𝑐𝑜𝑠 (

𝜃i+1+𝜃i

2
) , 𝑐𝑖2

= 2𝑟2(1 + 2 cos(𝜃i+1) cos(𝜃i)) 

𝑐𝑖3
= −4𝑟3𝑐𝑜𝑠 (

𝜃i+1+𝜃i

2
)  ,  𝑐𝑖4

= 𝑟4                                            (5) 

 

Several assumptions were made when obtaining this 

expression. Namely, since the two filters are adjacent in frequency, 

their pole radii are almost equal. Hence, 𝑟𝑖 ≈ 𝑟𝑖+1. Since the filters 

are close to each other in frequency, (
𝜃𝑖+1−𝜃𝑖

2
)  is assumed small 

enough to satisfy 𝑠𝑖𝑛 (
𝜃𝑖+1−𝜃𝑖

2
) ≈ (

𝜃𝑖+1 −𝜃𝑖

2
) and 𝑐𝑜𝑠 (

𝜃𝑖+1 −𝜃𝑖

2
) ≈ 1.  

Magnitude responses obtained after spatial differentiation 

showed that the centre frequency of the new filter after spatial 

differentiation is equal to the mean of centre frequencies of the two 

adjacent filters prior to spatial differentiation. This shift can be 

observed in Figure 1 as well. The increased sharpness of frequency 

responses after spatial differentiation can be explained by the 

increased filter order. Hence, the selectivity of the filter can be 

considered to have increased as well. Following the above 

approach, further spatial differentiations will give bandpass filters 

of order 8, 16, 32, 64, 128 and so on. Although the filter order has 

increased, the filters remain stable. Consequently, spatial 

differentiation over a simple parallel 2nd order bandpass filter bank 

can be used to obtain stable higher order IIR filters. 

Finally, it should be noted that rather than directly 

implementing these higher-order filter banks for feature extraction, 

only the 2nd order filter bank was implemented, and the output 

signals of these filters were ‘spatially differentiated’ iteratively 

(refer Figure 2). This allows instabilities due to implementation of 

high order IIR filters to be avoided and is directly inspired by 

auditory modelling [24]. 

3.  FEATURE EXTRACTION 

We propose two novel features which can be used to extract 

discriminating information from the filtered and spatially 

differentiated speech signals. Features extracted from the smoothed 

envelope of a signal have given promising results for replay attack 

detection [25]. Hence, slowly varying spectral envelopes of the 

subband signals were used to extract features in this paper. The 

feature extraction process is shown in Figure 2. Speech signals 

were first filtered using a filter bank consisting of N 2nd order 

bandpass filters. Next, k spatial differentiations were applied 

        
Figure 1: Variation of frequency response with spatial 

differentiation for 55th filter of the filter bank. The response 

has become sharper with spatial differentiation. 
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iteratively on each filtered signal. The absolute value of each 

subband signal was calculated (i.e. full wave rectification) and 

each absolute signal was windowed into a set of overlapping 

frames. This signal was converted to the frequency domain by 

applying the DFT to each frame. Since the resulting signal contains 

frequency components of the envelope, it is of low frequency. 

Next, following two features were extracted from the output.  

3.1  Spectral envelope centroid frequency (CF) 

The centroid frequency (CF) of the spectral envelope can be 

defined as the weighted average frequency of the spectral envelope 

of the selected frame, where the weights are the magnitude of each 

frequency component. CF is representative of the distribution of 

energy in each envelope: 

𝐶𝐹𝑘 =
∑ 𝑓.|𝑊[𝑓]|

𝑓𝑢
𝑓=𝑓𝑙

∑ |𝑊[𝑓]|
𝑓𝑢
𝑓=𝑓𝑙

                                   (6) 

 

where 𝑓 is frequency of each component, 𝑓𝑙 and 𝑓𝑢 are the lower 

and upper frequency limits of the subband signal and |𝑊[𝑓]| is the 

spectral envelope of the subband signal.   

3.2 Spectral envelope centroid magnitude (CM) 

The other feature proposed is the centroid magnitude (CM) of the 

spectral envelope. This feature can be defined as the weighted 

average magnitude of the envelope under consideration. The 

weights are frequencies of each magnitude component. CM is the 

magnitude at the frequency position given by CF. Hence, the two 

features may contain complementary information. This feature can 

be considered as the frequency domain counterpart of temporal 

centroid amplitude feature proposed in our previous work [25].  

 

𝐶𝑀𝑘 =
∑ 𝑓.|𝑊[𝑓]|

𝑓𝑢
𝑓=𝑓𝑙

∑ 𝑓
𝑓𝑢
𝑓=𝑓𝑙

                                 (7) 

4. EXPERIMENTAL SETUP 

4.1 Database 

Experiments were conducted on the ASVspoof  2017 Version 2.0 

database [18]. This database is a modified version of the ASVspoof 

2017 database [3] which consists of genuine speech utterances and 

spoofed speech utterances which were created by replaying and 

recording genuine utterances using various playback and recording 

devices in varied acoustic conditions. All signals were sampled at 

16 kHz. The evaluation set of the database includes many 

utterances generated under replay conditions which are unseen in 

the training and development sets.  

4.2 Front-end configuration 

Parameters of the system were tuned using preliminary 

experiments on the development set of the database. Accordingly, 

a mel frequency scaled filter bank consisting of 80 2nd order IIR 

bandpass filters previously designed (equation (1)) was used to 

filter the signals. Pole radius and pole angle of each filter were 

obtained by first calculating centre frequencies and bandwidths of 

the filters. It is clear that each spatial differentiation reduces the 

number of subband signals by one. To maintain the dimension at 

80, a zero padding was introduced for the highest frequency 

subband after each intermediate differentiation. After the final 

differentiation, the highest frequency band was padded with the 

values of the subband before it. After spatial differentiation, the 

absolute value of each signal was Hamming windowed into 20 ms 

long frames with a 10 ms overlap. A DFT with 320 samples (same 

as frame length) was applied on each frame. Since the spectral 

envelopes contain low frequency content, CF and CM values were 

extracted for each frame per subband using frequency components 

only up to 950 Hz. Delta and acceleration coefficients of each 

feature were concatenated with them to provide additional dynamic 

information. 

The discrete cosine transform (DCT) was applied across 

subbands to the log of the CM feature set to reduce the correlation 

between values. Based on development set results, only the first 40 

coefficients of the feature were used for classification. Since CF is 

a frequency domain feature, log and DCT were not applied to these 

features. Hence, the dimension of CF feature was kept as 80. 

Utterance-wise mean-variance normalization was applied across 

frames to align genuine and replayed speech distributions to a 

common scale.  

4.3 Back-end classifier 

Based on feature dimensions and database size, a 2-class Gaussian 

Mixture Model (GMM) classifier with 512 mixtures was used as 

the back-end classifier for the experiments. Two GMMs, one 

modelling genuine data and one modelling spoofed data were  

       
Figure 2: CF and CM feature extraction process: k spatial differentiations were applied to speech filtered using N 2nd order bandpass 

IIR filters. Features were extracted from the spectral envelope estimated from the full-wave rectfied signal;  

{𝑦𝑖
(0)(𝑛); 𝑖 = 1, … , 𝑁 − 1} were the non spatial differentiated filtered outputs, where (0) denotes the order of differentiation. 
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created using the MSR Toolkit [26]. A log-likelihood ratio was 

calculated for each test utterance as the classification score. 

5. EXPERIMENTAL RESULTS 

Utterances from training and development sets were pooled 

together when training the GMMs for experiments on the 

evaluation set. Equal error rate (EER) was used as the performance 

evaluation metric in all experiments. First, the detection 

performances of each individual feature along with their delta and 

acceleration coefficients were evaluated with and without spatial 

differentiation. 

Classification accuracies for 2, 4 and 6 spatial differentiations 

were obtained. Results are given in Table 1, from which it can be 

seen that EER consistently reduces with an increased number of 

spatial differentiations for both features. The reason for such 

improved performance could be the increased selectivity of filters. 

Similar performance gains for both features show the consistency 

of the technique.  

Same experiments with CM feature were carried out using a 

triangular filter bank with same centre frequencies as the 2nd order 

bandpass filter (denoted 2nd order BPF) for comparison. Speech 

signals were converted to the frequency domain by applying DCT, 

and filtering was done in a frame-wise manner. Since spatial 

differentiation was applied to time domain signals, inverse DCT 

was applied prior to spatial differentiation. DCT was chosen over 

DFT because DCT provides a real-valued frequency domain 

signal. CM features were extracted similarly as described in 

Section 3. Results are given in Table 1 (denoted CM + ∆ + ∆∆ 

(Tri)). With no spatial differentiation, triangular filter system 

performed better than the 2nd order BPF system. Although spatial 

differentiation slightly reduced the error rate up to 4 

differentiations, the effect was not as significant as in the 2nd order 

BPF systems. Importantly, EER increased after applying 6 

differentiations. Hence, it is seen that the improvement that can be 

achieved using triangular filters is limited compared to 2nd order 

bandpass filters.  

 Next, the CF and CM features along with their delta and 

acceleration coefficients obtained after 6 spatial differentiations 

(denoted 6 SD) using 2nd order BPF were concatenated to form a 

new feature and the replay detection performance of this system 

was also assessed. The two best performing individual systems in 

Table 1 were fused at the score level using the FoCal Toolkit [27] 

to evaluate the complementary nature of the features further, with 

results shown in Table 2.  

Experimental results were compared with three baseline 

systems. The first baseline system (B1) used here [18] comprised 

19th order Constant Q Cepstral Coefficients (CQCC), along with 

their delta and acceleration coefficients with log energy 

coefficients of the signals also appended as the front-end feature. 

The second baseline system (B2) was based on temporal centroid  

 

 

 

 

 

 

 

 

amplitude (TC) feature proposed in our previous work [25]. This 

feature was extracted from the temporal envelope estimated using 

frequency domain linear prediction. The final baseline (B3) was a 

score-level fusion of three systems based on features extracted 

from the modulation spectrum of speech a signal [13]. The features 

used in these three systems were modulation centroid frequency 

cosine coefficients (MCF-CC), modulation static energy cosine 

coefficients (MSE-CC) and short-term cepstral coefficients 

(STCC). All three systems used GMMs as their back-ends. 

 

From Table 2, as single systems, S1 and S2 both performed 

better than baseline systems B1 and B2. Both fusion approaches 

show almost similar performance. Fusion of the two systems has 

brought the error rate down further, showing the complementary 

nature of the two features. However, the fused systems showed 

higher EER than B3, which may be because B3 uses long-term as 

well as short-term modulation information from speech signals. 

Hence, the increased filter order due to spatial differentiation may 

have led to high selectivity of filters, resulting in improved replay 

attack detection performance relative to selected baselines.  

6. CONCLUSION 

This paper investigates the effect of using spatial differentiation on 

filter outputs of a parallel filter bank as a means to improve replay 

spoofing attack detection accuracy. It was shown that spatial 

differentiation can be used to obtain stable higher order IIR filters, 

starting with a simple 2nd order IIR bandpass filter. Hence, this 

method can be used to easily develop filters with more selectivity. 

The improved performance of the filters was evaluated by applying 

spatial differentiation as a pre-processing technique in a front-end 

feature extraction method for replay attack detection. Two simple 

systems with conventional GMM back-ends which outperformed 

some baselines were developed. Fusion of the systems brought the 

error rate down further. Since spatial differentiation improves filter 

selectivity, it could be adopted in many feature extraction 

processes without limiting to replay attack detection. 

Table 1: EER (%) using the evaluation set of ASVspoof 2017 Version 2.0 database using two proposed features for 

different numbers of spatial differentiations 

Feature 

EER (%) 

No spatial 

differentiation 

2 spatial 

differentiations 

4 spatial 

differentiations 

6 spatial 

differentiations 

CF + ∆ + ∆∆ 20.67 14.31 11.92 10.84 

CM + ∆ + ∆∆ 20.24 15.22 11.61 10.93 

CM + ∆ + ∆∆ (Tri) 13.57 12.42 12.03 13.29 

Table 2: EER (%) values before and after fusion 

 System EER (%) 

B1 CQCC [18] 12.24 

B2 TC [25] 14.89 

B3 MCF-CC+MSE-CC+STCC [13] 6.54 

S1 CF + ∆ + ∆∆ (6 SD) 10.84 

S2 CM + ∆ + ∆∆ (6 SD) 10.93 

 S1 + S2 (Feature level) 8.58 

 S1 + S2 (Score level) 8.80 
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